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tions P, (x) and P_ (x) in the domain a , we can determine the topological picture 
of the distribution of the sets H,, Ha, H, in Sz , and, in accordance with the Theorems 
1.1, 1.4 and 1.5, we can classify the stability of the trivial solution of the system(l.2). 
Lemma 1.1 makes it possible to carry over this classification to the system (1.1). 

The author thanks V. V. Rumiantsev for his interest to this paper. 
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We consider almost linear symmetric hyperbolic systems with constant coeffici- 
ents in the linear part and with nonlinear terms chaining a small parameter. 
The asymptotic method used here for construction of approximate solutions is 
based on the work of Bogoliubov and Miaopol’skii [ 11, and has been applied to 
systems with a single independent spatial variable yZ, 31. Along with a slow time 
we introduce slow coordinates. For the approximate solution we obtain, not an 
infinite system as in 141, but a finite system of almost linear partial differential 
equations with constant coefficients, a system which is simpler than the original 
one, We present an algorithm for obtaining approximate solutions. We alsoshow 
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that the approximate solution is close to the exact solution on an arbitrary finite 
interval 

m = (m,, m,, * . .t ma), P = (P(l), . . ,, W)) 

Here A(‘) and B are cvnstant real square matrices of vrder n ; AN are ~rnrne~ic 
matrices ; IJ is a small parameter, and P (u) is a polynomial in u. 

Along with the system (1.1) we consider the following degenerate linear system with 
constant coefficients 8 

r.Q + 2 A(‘) Ut + Bu = 0 (1.2) 
I=1 

This system has svlutions of the form : 

u (2, t) = a* exp li (wt - kz)l +- c. c., rZ = (kr, . . ., k,) U.3) 

(the abbreviation c. c. indicates the complex conjugate of the expression appearing be- 
fare it). Here, a is an arbitrary complex number ; 9 is a right zero vector of the matrix 
H ; o and k are connected by means of the dispersion equation 

II(w,k)=detN=O, li=ol-i A(Qk,-iB (1.4) 
I=1 

where I is the unit matrix, 
Let there exist a nonempty set $2 of real frequencies o,mutually commensurable 

and also commensurable with Y ; let $2 also contain wave vectors k, = {kcxv . 6 +t 
kol} with real components, wherein like-named components kls, . . ., kc,, . . . are 
mutually commensurable and are also commensurable with xi .The wave vector cvm- 
pvnents satisfy the dispersion equation D (tic, k,) = 0. We assume also that 

XI (ac, k,) / do # 0 0‘5) 

Consequently, in neighborh~s of the points (CO,, k,) Eq, (1.4) defines o as a single- 
valued function of k. Further, we assume that the values do / dkt [t=kcl are real. To 
each set of values of (CO__, k,) there corresponds an eigen-wave of the system (1.1) of 
the form (1.3). 

We pvse the problem of co~truc~ng an approximate solution of the system (1. l), ge- 
nerated by an initial combination of waves of the form 



with integral compnents, faa which 
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in place of ~(‘1 of the expression (1.7). taking into account the representation 

P (u”‘) = P (V + p) = P (0 + pep (5, t, a, 4 (1.8) 

V=f$ a,(X,z)9,expfi(o~--FEbZ)J +C. c. 
s?=il 

Here q (5, t, a, r.u) is a periodic function of 5 and t (a trigonometric polynomial) 
and a polynomial in a,. w and ~1. 

With this choice of w , the function ~(11 will be an exact solution of the system 
s 

&f’ + 2 A(“, (1) Uf + B&) = pdf (5, t) P (~~1)) + @g(l) (z, f , p) (1.9) 
I=1 

s 

g”‘(x,t,P)=f(s,t)cp(s,t,a,w)----_ A(+ 0.10) 
I=1 

Here fv = {$‘)@), . . ., fW$~~}. 
For determining w we obtain the linear system 

s 

Wf + 2 A(‘)tq + Bw = h, (X, t, lit z) (1.11) 
l=l 

(1.12) 

In the system (1.11) we regard the slow variables x and z as parameters, independent 
of x and t. It follows from (1.12) that h (5, t, x, -c) consists of two terms: a product 
of f by the trigonometric polynomial P (v), in which the coefficients of the harmonics 
are polynomials in the complex amplitudes a,, and a trigonometric resonate polynomial, 
the coefficients of the harmonics of which depend on da, I ij~ and da, / a~. We write 

h (2, r, X, a) in the form ofaFourier series and extract from it the resonance part 

(1.13) 

Here 

exp [ - i (oc, ,t - k,, &] dtdz 

We seek a solution of the system (1.11) in the form 

(1.14) 
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Upon substituting Eqs. (1.13) and (1,15) into (1. ll), we obtain linear algebraic systems 
for determining WC+ (x, z) : H w = F,,. 

c,oL c,m (1.16) 

Since D (mot k,) # 0, we can determine w, (x, r) ~quely. For the exismce of 
we (x, 7) it is necessary and sufficient that 

(Lr F,) = 0, c = 1, . . ., p (1.17) 

Here 5, is an arbitrary right zero vector of the matrix He*, conjugate to the matrix 
I?,. We restrict the discussion to the case in which the rank of the matrix N,is equal 
to n - 1. Then C is determined to within a factor and the solution of the system 
(1.16) has the form- 

WC (XT x) = 2, (x, r) + cc (X* r&c (1.18) 

Here 2, (x, r) is an arbitrary solution of (1.16) and c, (II, r) are arbitrary functions 
of ^;I and z. Pn what follows we assume that these functions belong to the class c,+,. 

We obtain differential equations for determining the slow amplitudes a, (x, z) from 
the condition (1.17), upon taking into account (1.14) and (1.12), in the form 

(1.19) 

Here fe (a) is a polynomial in the amplitudes a, of the same degree as P. The coef- 
ficients uC1 are components of the group velocities u, of waves propagating with the 
amplitudes a,. To show this, we differentiate the identity (5, H 9) = 0 with respect 
to k, ; in doing so, we regard w as a function of kr, . . ., k, determined by the dis- 
persion equation 

(at / dk,, H@ + (5, Jao / dk,$) - (5, -4%) + (5, Hd\P / %) = 0 
Since &J = 0 and (5, I;rby~ / akl) = (H* 5, a$ / dkl) = 0, then 

do I c?k, = (51 A(‘%) I (5,q) = - Clkl’ (co, k) I I),’ (a, k) 

Hence, for k = Ic, we obtain V,t = a@ f 8kzl+kC. By assumption, the values of 
dw / 8kllkzkr are real. From (1.5) it follows that the vCz are finite and the system 
(1.19) is hyperbolic. 

The initial conditions follow from (1.6) and have the form 

a, (x, 0) = a,(O), c = i, * . .( d; a, (‘x, 0) = 0, c = tl+i, . . . . q (1.20) 

The system (1.19). with the initial conditions (1.20), has a locally analytic solution. 
We assume that the problem (1.19). (1.20) has a soluti on in the class Cr.+, in the do- 
main - 00 < x < 00, 0 Q z < 00. Then the function w (x, t, II, T), defined by 
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the series (1.15). belong to the class Cr+l in the ( z, t )-halfspace. 
The right-hand sides of the systems (1.16) are polynomials in a, 8~ / dr and &z / 

8% , and are therefore r i- 1 times continuously differentiable. Consequently, with the 

function c, (x, z) chosen from the class C,.+r, the Fourier coefficients we, a (x, r) 
also belong to the class C,.+,. 

We note that the ambiguity in determing w (x, t, x, z) , owing to the arbitrariness in 

c, (x, z) , is of the order of ~2 in an arbitrary bounded domain G: {z E X, 0 e t 2 I’ 

(X is the bounded portion of the space {tr, . . ., CQ}). In fact 

r ac 
Cc (Xv r) - cc (X, 0) = s -J+ a~, 1 c, (x, z) - ce (x, 0) I/( pTL2 

0 

Here L2 is a constant which bounds & / t3z in the domain G,: {x E n X, 0 <‘<z “< PT}. 

Therefore, the ambiguity in determining ~(1) is of the order of ~2. It may be shown 

similarly that the ambiguity in determining aj&) / axi, j = 1, . . . , F is of the same 
order. 

Convergence of the series (1.15) and the possibility of termwise differentiation of it 

r + 1 times is determined from its nonresonance part, Differentiating systems (1.16) 
and solving them, we obtain 

Djwa = HamlDjF,, j = O,l,. . ., r + 1 

Here, the symbol Dj stands for the derivative of order f with respect to an arbitrary 
combination of the independent variables r, x1, . . ., x8. By virtue of the condition 

2” there exists a constant L, such that 

1 Djwa I < Ls I DjFaI 

The coefficients F, represent the product of the Fourier coefficients f, of the function 
f (z, t) by polynomials in the amplitudes and their derivatives up to the order r + 1 

with a finite set of coefficients. In the domain GP these polynomials are uniformly 

bounded by a constant. Therefore, the Djwa decrease in the same way as the Fourier 

corfficients of the function D jf (x, t), i. e. they decrease faster than 

1 / 1 m I t+s-j, ) m Ii = I m, Ii0 a I m, I ji . . . I m, 1’” 

j. + jl + . . . + j8 = i 

Consequently, the series (1.15) and its derivatives to the order r -I- 1 converge abso- 
lutely and uniformly in the domain G and w (z, t, x, z) E C,.+l. 

It follows from (1.7) that since a, E C,,, and w EZ Cr+l, then w@) (5, t) =.,.+I, 
and from Eq.(l. 10) it follows that g(l) (2, t, p) E C,. 

Thus, the problem of obtaining an approximate solution is reduced to the integration 

of the almost linear system (1.19) and the solution of the algebraic systems (1.16). The 

system (1.19) is considerably simpler than the original system and its solution can be 
found, for example, by the method of successive approximations by integrating along the 

rays 
Xl - v,t z = const 

ay+‘) (x, z) = a?) + s fc {a(m) [x - v, (t - a), al) da 
0 

2. We show now that the approximate solution u (1) (z, t) is close to the exact solu- 
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tion u (5, t) in a bounded domain of the (3, t) -halfspace when the initial conditions 

coincide or are in close proximity. 
Theorem. Let u (z. t) be a solution of the system (1. l), ~(1) (z, t) be a solution 

of the system (1.9), and u (z, t) E c,., u(l) (x, t) E c, for -cc ( z < 00, 0 < 
t<oo. Let 

u (G 0) = cp (4, u(1) (x, 0) = II, (z), cp, $ E c,, - 00 <I < 0 (2.1) 

19’(?)-w41<PZK 14d+--~k~(~)(ctL2~ CL 2) 

Here k < r ; Dk is the derivative of order k with respect to an arbitrary conbination 

of the variables xl, . . ., x8, ; K is a constant. 
Then for any T > 0 and any bounded closed simply-connected domain X with a 

smooth boundary L, there exists a constant &f such that 

1 u(1) (x, t) - u (2, t) I < $M, vxz~X,O<t< T 

O<Y<Po 

To ease the writing we shall not indicate here the dependence of 24 u(l), #“, Cp 

and 9 on p. We assume that the initial functions cp (x, p) and 0 (x, CL) , and their 
derivatives Dkcp (x, IL) and D k$ (5, CL), k< r are continuous functions of ~1. By 

a theorem on the continuous dependence of the solution of an almost linear system on a 

parameter [5], the functions u (x, t, r_l), Dku, u(l) (5, t, p) and DBu(l) are continu- 
ous functions of p for k < r . The function g’*) (z, t, p), as a consequence of (1.10). 

also depends continuously on p. 

Proof, Differentiation of the systems (1.1) and (1.9) with respect to an arbitrary 

combination of the variables up to the order r inclusive leads to extended systems of 
the form I 

y, + 2 ~-8’) 2 + QY = pLf1 (r, t, y) 
I=1 1 

(2.3) 

?/I”+i R(l) g + Q.Y(')= P/I (2, t, Y (1) ) + P*gl(~ t) 
I=1 1 

Here v and y(r) are vectors whose components are components of the vectors u and u(l) 

respectively, and their derivatives up to order r inclusive, with respect to an arbitrary 

combination of the variables zlr . . ., s,; Rtb)Q are cell-like square matrices formed 

from the matrices Ar amd B , respectively. The vector-valued function fi is the sum 

of products of periodic functions of x and t by polynomials in Y. The components of 
the vector-valued function g, (3, t) are components of the vector-valued function 

g(l) (5, t) and its derivatives up to order r inclusive, with respect to an arbitrary com- 
bination of the variables zl, . . ., zg. 

From the relations (2.1) and (2.2), we have I y (5, 0) - y(l) (s, 0) 1 < pa K. We now 
consider the systems (2.3) as identities in z and t, obtained by substituting into the equa- 
tions (2.3) their solutions (these solutions are assumed to satisfy the initial conditions 
given by the relations (2.1)). We subtract the first of the relations (2.3) from the second 
and consider the resulting identlty. By a lemma of Hadamard on finite increments, we 
have 

f1 (2, t, !I”))+, (5, 6 y) = e (z, t, y(l), y) (y (l) - y) = 8 (5, t) u (z, t) 
0 = $1) - y 
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The identity so obtained now assumes the form 

(2.4) 

The elements of the matric function E (2, t) are sums of products of derivatives of the 
periodic function f (r, t) up to order r inclusive, by polynomials in y(l) and Y , and 
they are, therefore, continuous functions in the (x, t) -halfspace, Since the function 
e (z, t) is assumed to be known, we can consider (2.4) as a linear system and use the 
results given by Courant in [S] for estimating the norm of the solution of a symmetric 
hyperbolic system in terms of the norm of the initial function u (x, 0) and the norm of 
the right~~and side. We consider the conoid of dependence for the set of points of the 
space (t, s, - * - , 5,) for 0 2 t “( T (XI, . . .) ss) E X. Let N (h) be the section of 
this conoid by the plane t = h. We then have 

h 

Iv WIP = 1 v2b, h)dx <C~llv K911a+ W4511 a(f) lldz (2.5) 
Wf 0 

By virtue of (2.2). we have II Y (0) 112 < p c, therefore, from the relation (2,5) we have 

/t u (h> i12 < @“cd, Q “< h 2 T 
By Sobolev’s imbedding theorem [6] it then follows that 

f u(l) (cc, t) - tc (5, tf I < p%lf, 0 “c t 2 T, x E x 
T%is completes the proof of the theorem. 
The magnitude of the constant iM depends on the measure of the set X (being pro- 

portional to it): it contains the factor ear’, where a depends on the coefficients ofthe 
system and characterizes the stability of the system ; it also depends on the maximum 
of the function g(l) G t) t . 

The author thax&s G. M, ZhisIin for useful remarks. 
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