A method of studying the stabllity of autonomous systems 639

tions P, (x) and P_ (x) in the domain Q ,we can determine the topological picture
of the distribution of the sets H,, H,, H; in Q ,and, in accordance with the Theorems
1,1, 1,4 and 1,5, we can classify the stability of the trivial solution of the system(1,2),
Lemma 1,1 makes it possible to carry over this classification to the system (1, 1),

The author thanks V, V, Rumiantsev for his interest to this paper,
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We consider almost linear symmetric hyperbolic systems with constant coeffici-
ents in the linear part and with nonlinear terms containing a small parameter,
The asymptotic method used here for construction of approximate solutions is
based on the work of Bogoliubov and Mitropol'skii [1], and has been applied to
systems withasingle independent spatial variable [2, 3], Along with a slow time
we introduce slow coordinates, For the approximate solution we obtain, not an
infinite system as in [4], but a finite system of almost linear partial differential
equations with constant coefficients, a system which is simpler than the original
one, We present an algorithm for obtaining approximate solutions, We alsoshow
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that the approximate solution is close to the exact solution on an arbitrary finite
interval,

1, We consider the system

u + D) AV, + Bu = pf (z, t) Pfu) L1
1=1

u(z, f)={u® .., e}, z={zg,..., Zs}

Uy == aul 62:1

f(x’t)::{f(l)}."’f(ﬂ)}, fECT—H;a r>3/2+i

fP = {fopw, . fm pmy

f(z,t) = i fmexp [i (mﬂvt!—sz mml:c,)]
=1

M=

m = {my, my, ..., mg}, P = {PO, . ., pm}

Here A® and B are constant real square matrices of order 7 ; A® are symmetric
marrices; W is a small parameter, and P (u) is a polynomial in u.

Along with the system (1,1) we consider the following degenerate linear system with
constant coefficients

s

u, +2 Ay, 4 Bu =0 (1.2)
I==1

This system has solutions of the form:

u(z, ) = apexpli(ot —kx)l +cc, k= {ky ..., k} (1.3)

(the abbreviation ¢, ¢, indicates the complex conjugate of the expression appearing be-
fore it), Here, a is an arbitrary complex number; 1 is a right zero vector of the matrix
H ; ©and k are connected by means of the dispersion equation

£
Do, k)=det H=0, H=ol—) ADk, —iB (1.4)
I==1
where I is the unit matrix,

Let there exist a nonempty set £ of real frequencies @, mutually commensurable
and also commensurable with v ; let €} also contain wave vectors k, = {kch vy
kc,} with real components, wherein like-named components Kysy - - oy keyy ... are
mutually commensurable and are also commensurable with ®; .The wave vector com-
ponents satisfy the dispersion equation D (o, k;) = 0. We assume also that

oD (@, k) / da 5= 0 (1. 5)

Consequently, in neighborhoods of the points (w,, &.) Eaq. (1,4) defines o as a single-
valued function of k. Further, we assume that the values do / dk; ‘k:kcl are real, To
each set of values of (w,, k) there corresponds an eigen-wave of the system (1, 1) of
the form (1, 3),

We pose the problem of constructing an approximate solution of the system (1, 1), ge-
nerated by an initial combination of waves of the form
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d
3P exp(— ik g) Fa e, —o<Lrlo, (0nk)sQ (1.6
=1

where g/ are specified complex numbers,

We assume the following conditions to be satisfied,
1%, The set N, of pairs of vectors

(m®, n®), m® = {m®, m®, . .., m®},
n® = fn,®, .., n®}
with integral componeats, for which
(me® + nPo, m®ix, + nEY, L. m O+ 1Y) = Q

4 d
b=d+4,...,q, n®% =2 nPe, nOkD= 3 %,

G [

is finite, i.e, the system has a finite number of combinative resonance waves (o,

ke Q,e=d—+1,...4¢

2°, There exists a constant Ly such that
inf | D (me® v + n®o, my®uy + 2059, ...,
mBhuy 4 n®k) | = L; >0, {m®, 2O} = N,

This requirement means that the number of combinative waves arbitrarily close to re-
sonance waves is finite, (In practical calcularions one should regard combinative waves
for which D (@, k) ~ p as resonance waves),

Conditions 1° and 2° are satisfied, in particular, speaking geometrically, the surface
in Esq (the space of @g, %y, . . ., k) , defined by the digpersion equation, is bounded
with respect to one of the coordinates,

We seek an approximate solution of the system (1, 1) in the half-space (— oo < z <2
oo, 0 < ¢ < o) , belonging to the class €., in the form

q

w0z, 2) = D) a,(x, 1) . exp [i (0t — k.2)] + (.7

C=a]

G pw(x, b, Y1), —oron, 0o
X== o -0, T={f-bpt

Here, ¥y and T, are constants; a, (), T) are unknown scalar complex-valued functions
of the slow variables y and © ; w (%, ¢, §, T) is an unknown real vector-valued func-
tion, periodic in z and ¢ with the periods A = {A;, ..., As} and B ,respectively;
A; is the least common multiple of the numbers 27 / %, 2n / k(¢ = 1, . . ., d); 8
is the least common multiple of the numbers 2x / v, 2n/ @, (¢ = 1, . . ., d). Thus,
in (1, 7), besides the initial waves (w, k), ¢ = 1, ..., d, there are included the
combinative resonance waves (w,, k), ¢ =d-+1,.. ., ¢

We obtain an equation for the function w (z, £, 7, 1) by equating to zero the cosf-
ficient of y upon substituting into the operator

N @) =u? + 3} A0uf” 4 Bu® — uf (2,1) P ()

=1
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in place of u® of the expression (1, 7), taking into account the representation
P ) =P(V+pw) =P (V) + pe(zt a v (1.8)

q
V=2 a, (X, 7) Poexp i (0t — kez)] + ¢,

e=1
Here ¢ (z, ¢, a, w) is a periodic function of x and ¢ (a trigonometric polynomial)
and a polynomialin @, w and y.
With this choice of w , the function () will be an exact solution of the system

i + D} A + Bu®) = pf (2, 1) P (u®) + pg® (z,t,p) (L9

1=}
g0 (. t, 1) = [ (&, 1) 9 (zs ¢, o, w)-—-———Z 40 2 (1.10)

Here fop = {fDegM), .. ., fimgm},
For determining w we obtain the linear system

w, + 2 A®w, + Bw = h(z,t,%,7) (1.11)
=1
Bzt =1 (@, t)P(V)—{Z‘. exp [i (0d — k.a)] X (1.12)
c==1

[ ]wc+c. e

In the system (1, 11) we regard the slow variables ¢ and T as parameters, independent
of zand 7z It follows from (1.12) that £ (x, I, 9, T) consists of two terms; a product
of f by the wigonometic polynomial P (V), in which the coefficients of the harmonics
are polynomials in the complex amplitudes «,,and a trigonometric resonace polynomial,
the coefficients of the harmonics of which depend on da,, / dx and da, / dx. We write
h (z, t, ¥, T) in the form of a Fourier series and extract from it the resonance part

q

h(z,t, %, 7)= {2 Fo(x, v)exp [i (ot — k.x)] + (1,13)
c=1

2 Fo (1, 7) exp [i (0ot — ko)I} + x. c.
Here ¢
(0o, k)= Q, 0, = m&)b)v -+ n®a
s = mO% 4+ n®k,  {m®, n®} =N,
8 A

Fe alz,©)= SS hiz,t,y, 1) X (1, 14)

0-A
expf[—i (mc,‘1 c,ax)] dtdx

We seek a solution of the system (1,11) in the form
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q
w(z, 1,1, 7) = {2’1 we (4, 7) exp i (0 — kez)] + (1.15)
e=1
v T T, r 2 1. \1] 1
LiWal), T)€XP |1 (gl — nx)lj‘ +

Upon substituting Eqs, (1, 13) and (1, 15) into (1,11), we obtain linear algebraic systems
for determining w :
B Wou (% ) HeaWe,o = Feya (1.16)

Since D (wgq, k,) 7 0, we can determine w, (%, T) uniquely, For the existnce of
we (%, T) it is necessary and sufficient that

(8 F) =0, c¢=1,...,¢ (1.17)

Here [, is an arbitrary right zero vector of the matrix H *, conjugate to the matrix
H,. We restrict the discussion to the case in which the rank of the matrix His equal
to n — 1. Then {, is determined to within a factor and the solution of the system

{1,16) has the form we (X T) = 2 (% T) + e (X» T (1.18)

Here z, (%, t) is an arbitrary solution of (1,16) and ¢, (), T) are arbitrary functions
of ¥ and 7. In what follows we assume that these functions belong to the class Cria-

We obtain differential equations for determining the slow amplitudes a, (%, T) from
the condition (1, 17), upon taking into account (1, 14) and (1,12), in the form

€., 4%
61.‘ =f.(a)y V= vy (1.19)
oA
fol@) = 1 \(# 0 PV exp ({0t — ko) dtdz

(Ec,wc)9~A1 oo s P

Here f.(a) isa polynomial in the amplitudes q, of the same degree as P, The coef-
ficients p,; are components of the group velocities v, of waves propagating with the
amplitudes &.. To show this, we differentiate the identity ({, H ¢) = 0 with respect
to %, ; in doing so, we regard o as a function of %y, . . ., k; determined by the dis-
persion equation

(0% / 0k, He) + (L, 00 [ kpp) — (&, AD) + (&, Hop / ok;) =0
Since Hp = 0 and (7, Hop / ok;) = (H*L, 09 / 0k;) = O, then

90 | 9k, = (3, AOY) / (L, %) = — Dp' (0, k) / Do’ (0, &)

Hence, for k = k, we obtain Ve = 00 / 0k;jx—y,. By assumption, the values of
0w [ Ok y—y, are real, From (1, 5) it follows that the U, are finite and the system
(1,19) is hyperbolic,

The initial conditions follow from (1, 8) and have the form

a.(x,0)=a®, c=1,...,d; a, (%0 =0, ¢=d+1, .., ¢ (1.20)

The system (1,19), with the initial conditions (1,20), has a locally analytic solution,

We assume that the problem (1, 19), (1,20) has a soluti on in the class (,,, in the do-
main — oo << § << %0, 0 & 1 < co. Then the function w (z, ¢, ¥, 1), defined by
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the series (1, 15), belong to the class C,,, in the ( z, ¢ )-halfspace.

The right-hand sides of the systems (1, 16) are polynomials in @, 0a / 0T and da /
0, ,and are therefore r + 1 times continuously differentiable, Consequently, with the
function ¢, (y, ) chosen from the class C,,,, the Fourier coefficients we, o (X, T)
also belong to the class C,.,;.

We note that the ambiguity in determing w (z, ¢, y, t) , owing to the arbitrariness in
¢c (X, ) ,is of the order of p?in an arbitrary bounded domain G:{z = X,0<t LT
(X is the bounded portion of the space {z;, ..., 2,}). In fact

T

C
X, V) —c, (X, 0) = S—g% ar, e, (X, 1) —c, (X, 0)| € pTLe

0
Here L, is a constant which bounds dc / v in the domain Gy: {(y € p X, 0 <v < ur).
Therefore, the ambiguity in determining 4 is of the order of u2, It may be shown
similarly that the ambiguity in determining a'uV/ 9y}, j =1, ..., r is of the same
order,

Convergence of the series (1, 15) and the possibility of termwise differentiation of it
r 4+ 1 times is determined from its nonresonance part, Differentiating systems (1, 16)
and solving them, we obtain

Dw, = H,*D;F,, j=0,1,...,r+1

Here, the symbol D; stands for the derivative of order j with respect to an arbitrary
combination of the independent variables t, %, . . ., ¥, By virtue of the condition
2° there exists a constant Lg such that

| Djwa | < Ly | DyFq

The coefficients F,represent the product of the Fourier coefficients f,, of the function
f (z, t) by polynomials in the amplitudes and their derivatives up to the order r + 1
with a finite set of coefficients, In the domain Gy, these polynomials are uniformly
bounded by a constant, Therefore, the D ;w, decrease in the same way as the Fourier
corfficients of the function D;f (z, ?), i.e. they decrease faster than

Um0, mp = [me e my |5 s

jotiht ... tis=1]

Consequently, the series (1,15) and its derivatives to the order r —+ 1 converge abso-
lutely and uniformly in the domain G and w (z, ¢, ¥, 1) &€ Cr4y.

It follows from (1,7) that since a, & C,,, and W & C,yy, then WM (2,8) EC, 1,
and from Eq,(1,10) it follows that g (x, ¢, p) & C,.

Thus, the problem of obtaining an approximate solution is reduced to the integration
of the almost linear system (1,19) and the solution of the algebraic systems (1.16), The
system (1,19) is considerably simpler than the original system and its solution can be
found, for example, by the method of successive approximations by integrating along the
rays

%1 — Ve T = const

a™ (4 1y = a® 1+ Sfc (@™ [x — v (v —o),sl}ds
o

2, We show now that the approximate solution u() (z, f) is close to the exact solu-
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tion u (z, t) in a bounded domain of the (z, ¢)-halfspace when the initial conditions
coincide or are in close proximity,

Theorem, Let u (x.?) be a solution of the system (1,1), wu( (x, ) be a solution
of the system (1,9),and u (z, ) EC,, uW (z, 1) & C; for —c0o <z << 00,0
t << oo, Let

u(z, 0) = ¢ (), W (z,0)=v(), pv&E(, —olzlx (2.1)

@@ —% @ <K, [Dwp () — Db ()| < WK (2.2)
Here k < r ; D, is the derivative of order % with respect to an arbitrary conbination
of the variables z;, . . ., s ; K is a constant,

Then forany 7 > 0 and any bounded closed simply -connected domain X with a
smooth boundary L, there exists a constant M such that
u® (z, &) —u(z, | <pM, VzeX 0<:<T
0<p<L
To ease the writing we shall not indicate here the dependence of u, uf), g, ¢
and P on u. We assume that the initial functions @ (x, w) and P (x, u),and their
derivatives D, (z, p) and D,V (z, p), k<r are continuous functions of p. By
a theorem on the continuous dependence of the solution of an almost linear system on a
parameter [5], the functions u (z, ¢, p), Dyu, u® (2, ¢, p) and D,u are continu-
ous functions of u for k < r, The function g (z, ¢, u), as a consequence of (1,10),
also depends continuously on .
Proof, Differentiation of the systems (1,1) and (1, 9) with respect to an arbitrary
combination of the variables up to the order r inclusive leads to extended systems of
the form

v, + IZ RO a%y: +Qu=palsty) (2.3)
=1

S
(1)
o0+ ) RO B oy~ pfa 1,y ) + e (5, 1)
=1 l

Here y and yU are vectors whose components are components of the vectors « and u'!)
respectively, and their derivatives up to order r inclusive, with respect to an arbitrary
combination of the variables x;, ..., zs; R(b)o are cell-like square matrices formed
from the matrices 4! amd B, respectively, The vector-valued function f, is the sum
of products of periodic functions of * and ¢ by polynomials in y. The components of
the vector-valued function g, (z, t) are components of the vector-valued function

g (z, t) and its derivatives up to order r inclusive, with respect to an arbitrary com-
bination of the variables zi, . . ., z;.

From the relations (2, 1) and (2, 2), we have |y (z, 0) — 4V (2, 0) | < p? K. We now
consider the systems (2, 3) as identities in = and ¢, obtained by substituting into the equa-
tions (2, 3) their solutions (these solutions are assumed to satisfy the initial conditions
given by the relations (2,1)), We subtract the first of the relations (2, 3) from the second
and consider the resulting identlty, By a lemma of Hadamard on finite increments, we

have  f (et gD —f (ot ) =& (2 1 ¥, 1) G0 — ) = & (5, ) v (2, 0)

v=yW—y
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The identity so obtained now assumes the form

&
vt 2RO 2 Q- wr =wte, o (2.4)
==}
The elements of the matric function ¢ (z, #) are sums of products of derivatives of the
periodic function £ (z, #) up to order r inclusive, by polynomials in y® and y,and
they are, therefore, continuous functions in the (z, ¢)-halfspace, Since the function
e (z, t) is assumed to be known, we can consider (2,4) as a linear system and use the
results given by Courant in [5] for estimating the norm of the solution of a symmetric
hyperbolic system in terms of the norm of the initial function v (z, 0) and the norm of
the right-hand side, We consider the conoid of dependence for the set of points of the
space (1,2, ...,2) for 0L+ < T (24, ..., z5) € X. Let K (k) be the section of

this conoid by the plane ¢ = A, We then have
h

k= § neni<alpOp+ o lamlda (2..5)
R(R) 0
By virtue of (2,2), we have | v (0) || 2 < u# C, therefore, from the relation (2, 5) we have

fo®2<piCs, 0KRLET
By Sobolev's imbedding theorem [6]it then follows that

[u® (2, 8) —u (e, ) | < piM, 0 St <2 T, 2 X

This completes the proof of the theorem.,

The magnitude of the constant M depends on the measure of the set X (being pro-
portional to it); it contains the factor *7, where o depends on the coefficients of the
system and characterizes the stability of the system; it also depends on the maximum
of the function gV (z, 5.

The author thanks G, M, Zhislin for useful remarks,
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